Open Qmin  0.8.0
GPU-accelerated Q-tensor-based liquid crystal simulations
Macros | Functions
qTensorFunctions.h File Reference
#include "std_include.h"
#include "symmetric3x3Eigensolver.h"
Include dependency graph for qTensorFunctions.h:
This graph shows which files directly or indirectly include this file:

Macros

#define HOSTDEVICE   inline __attribute__((always_inline))
 

Functions

HOSTDEVICE void qTensorFromDirector (scalar3 n, scalar S0, dVec &q)
 return a qtensor given a director and a value of S0 More...
 
HOSTDEVICE scalar TrQ2 (dVec &q)
 Tr(Q^2) = Q_{kl}Q_{lk}. More...
 
HOSTDEVICE scalar TrQ3 (dVec &q)
 Tr(Q^3) More...
 
HOSTDEVICE scalar TrQ2Squared (dVec &q)
 (Tr(Q^2))^2 More...
 
HOSTDEVICE dVec derivativeTrQ2 (dVec &q)
 derivative of Tr(Q^2) w/r/t q[0] .. q[4] More...
 
HOSTDEVICE dVec derivativeTrQ3 (dVec &q)
 derivative of Tr(Q^3) w/r/t q[0] .. q[4] More...
 
HOSTDEVICE dVec derivativeTrQ2Squared (dVec &q)
 derivative of (Tr(Q^2))^2 w/r/t q[0] .. q[4] More...
 
HOSTDEVICE dVec allPhaseComponentForces (dVec &q, scalar &a, scalar &b, scalar &c)
 Phase components combined into one for computational efficiency. More...
 
HOSTDEVICE dVec QjkQki (dVec &q)
 Q_{jk}Q_{ki}. More...
 
HOSTDEVICE scalar determinantOfQ (dVec &q)
 determinant of a qt matrix More...
 
HOSTDEVICE scalar eigFromVecs (vector< scalar > &eVec, scalar ev0, scalar ev1, scalar ev2)
 eVec is Q*e, ev0,ev1,ev2 are components ofe More...
 
HOSTDEVICE void eigensystemOfQ (dVec &q, vector< scalar > &eVals, vector< scalar > &eVec1, vector< scalar > &eVec2, vector< scalar > &eVec3)
 get the eigensystem associated with a Q tensor More...
 
HOSTDEVICE void eigenvaluesOfQ (dVec &q, scalar &a, scalar &b, scalar &c)
 Get the eigenvalues of a real symmetric traceless 3x3 matrix. More...
 

Macro Definition Documentation

◆ HOSTDEVICE

#define HOSTDEVICE   inline __attribute__((always_inline))

The Q-tensor has five independent components, which will get passed around in dVec structures... a dVec of q[0,1,2,3,4] corresponds to the symmetric traceless tensor laid out as (q[0] q[1] q[2] ) Q = (q[1] q[3] q[4] ) (q[2] q[4] -(q[0]+q[3]) )

This file implements handy manipulations and functions of the Q-tensor as laid out this way